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Abstract
We investigate local distinguishability of quantum states by use of convex
analysis of joint numerical range of operators on a Hilbert space. We show
that any two orthogonal pure states are distinguishable by local operations and
classical communications, even for infinite-dimensional systems. An estimate
of the local discrimination probability is also given for some families of more
than two pure states.

PACS numbers: 03.65.Db, 03.65.Ud

1. Introduction

Local operations and classical communications (LOCC) are basic operations in quantum
information theory. Many interesting studies have arisen from the question, what we can/
cannot do using only LOCC. The question is highly non-trivial and difficult to solve due
to the lack of simple characterization of LOCC. The necessary and sufficient condition for
the deterministic convertibility of one pure state to the other was derived by Nielsen for
general bipartite systems in [1]. Furthermore, in [2], Vidal obtained the optimal probability of
converting one pure state to the other, non-deterministically. However, when we start thinking
of simultaneous convertibility of more than one state, the problem becomes more difficult,
because of the fact that the Lo–Popescu theorem [3] is not applicable there. The Lo–Popescu
theorem alternates the given LOCC with one-way operation which depends on the given states;
hence it is not applicable when we consider the operation on more than one state. Instead
of considering the general simultaneous convertibility problem, we consider some particular
situations, like distinguishing or copying quantum states by LOCC [4, 5], which are already
nontrivial interesting questions.

In this paper, we study the distinguishability problem, in bipartite systems. In [4],
Walgate et al proved that any two orthogonal pure states in finite-dimensional systems are
distinguishable. Unfortunately, because of the nature of their proof (that is constructed from the
two-dimensional case), this important result has been restricted to finite-dimensional systems
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so far. As it is indispensable to consider infinite-dimensional systems in the real world, the
analogous result in infinite-dimensional systems is desirable. In this paper, we prove the
infinite version:

Theorem. Any two orthogonal pure states in a bipartite system are distinguishable by LOCC,
even for infinite-dimensional systems.

In spite of these simple results for two pure states, it is known that more than two pure
states are not always distinguishable by LOCC. It was proved that three Bell states cannot be
distinguished with certainty by LOCC and four Bell states cannot, even probabilistically [6].
A set of non-entangled pure states that are not locally distinguishable was introduced in [7].
The probability of the discrimination for the worst case was estimated in [8]. In [9], a family
of linearly independent states, given by the generalized Pauli matrices, were shown to be
indistinguishable, deterministically or probabilistically. Furthermore, recently, the necessary
condition for the perfect LOCC discrimination of general multipartite states was given in
terms of the global robustness of entanglement in [10]. In this paper, we give an estimate of
discrimination probability for some families of more than two pure states. This result also
holds for infinite-dimensional systems.

The key notion of our approach is the joint numerical range of operators (see the definition
below). We represent pure states in terms of Hilbert Schmidt operators and investigate trace
class operators given by them. We see that the convexity of the joint numerical range of these
trace class operators restricted to arbitrary sub-Hilbert spaces implies the distinguishability
of states. From the fact that the convexity condition holds for a joint numerical range of two
self-adjoint operators, the distinguishability of two pure states is proven.

The remainder of the paper is organized in the following way: in section 2, we introduce
a representation of a vector in HA ⊗ HB as an operator from HB to HA. And from them, we
define the real vector space K. Then we represent our main results in terms of the vector space
K. In section 3, we correlate the convexity of the joint numerical range of the basis operators
of K. The theorems are proven in section 4.

2. The distinguishability of states

In this section, we introduce a representation of pure states onHA⊗HB as operators fromHB to
HA, and describe our main results in terms of the operator representation. In finite-dimensional
systems, the operator representation corresponds to the well-known matrix representation of
states, by use of a maximal entangled state. (See for example [11].)

Let HA,HB be separable (possibly infinite dimensional) Hilbert spaces. Let us fix some
orthonormal basis {fi} of HB . A vector ψ in HA ⊗ HB can be decomposed as

ψ =
∑

i

ϕi ⊗ fi,

in general. The vectors ϕi in HA satisfy∑
i

‖ϕi‖2 = ‖ψ‖2. (1)

Now we define a bounded linear operator X from HB to HA by

Xη ≡
∑

i

〈fi |η〉 · ϕi, ∀η ∈ HB. (2)
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From (1), the sum in (2) absolutely converges in norm of HB , and we obtain ‖X‖ � ‖ψ‖.
Then the vector ψ is represented as

ψ =
∑

i

ϕi ⊗ fi =
∑

i

(Xfi) ⊗ fi.

The bounded operator X∗X on HB satisfies

Tr X∗X =
∑

i

‖ϕi‖2 = ‖ψ‖2 < ∞, (3)

i.e., X∗X is a trace class operator on HB . By operating 1 ⊗ |fi〉〈fi | on ψ , we see that X is
the unique operator such that ψ = ∑

i Xfi ⊗ fi . On the other hand, for any bounded linear
operator X from HB to HA satisfying Tr X∗X < ∞, there exists a unique vector

∑
i Xfi ⊗ fi .

Hence we obtain the following one-to-one correspondence:

ψ ∈ HA ⊗ HB ⇔ X ∈ B(HB,HA), s.t. Tr X∗X < ∞,

through the relation

ψ =
∑

i

(Xfi) ⊗ fi. (4)

Here B(HB,HA) indicates the set of bounded operators from HB to HA.
Now let us consider a set of orthonormal M vectors ψ1, . . . , ψM in HA ⊗ HB . We can

associate each ψl with an operator Xl through (4). As in (3), X∗
mXl are trace class operators

on HB for all 1 � m, l � M and satisfy

Tr X∗
mXl = 〈ψm,ψl〉 = δm,l, 1 � m, l � M. (5)

Let K be the real linear subspace of trace class self-adjoint operators on HB spanned
by operators {X∗

mXl + X∗
l Xm, i(X∗

mXl − X∗
l Xm)}m�=l . Let N be the dimension of K and

(A1, . . . , AN) an arbitrary basis of K. The dimension N is bounded as N � M(M − 1).
Because each X∗

mXl satisfies (5), we have

Tr Ai = 0, i = 1, . . . , N. (6)

We will call K the real vector space of trace class self-adjoint operators associated with
ψ1, . . . , ψM .

Now we are ready to state our main results. In this paper, we show the following theorems:

Theorem 2.1. Let HA,HB be (possibly infinite dimensional) separable Hilbert spaces. Let
ψ1, . . . , ψM be a set of orthogonal pure states in HA ⊗ HB and K the associated real vector
space of trace class self-adjoint operators on HB . Then if the dimension of K is 2, the states
ψ1, . . . , ψM are distinguishable by LOCC with certainty. In particular, any pair of orthogonal
pure states ψ1, ψ2 are distinguishable by LOCC with certainty.

Theorem 2.2. Let HA,HB be (possibly infinite dimensional) separable Hilbert spaces. Let
ψ1, . . . , ψM be a set of orthogonal pure states in HA ⊗ HB and K the associated real vector
space of trace class self-adjoint operators on HB . Suppose that the dimension of K is 3. Then
ψ1, . . . , ψM are distinguishable by conclusive LOCC protocol with probability Pd such that

Pd � 1 − max
1�l�M

(
2∑

k=1

pl
k

)
.

Here, pl
k represents the kth Schmidt coefficient of ψl , ordered in the decreasing order.
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Remark 2.3. The last statement of theorem 2.1 is the extension of [4] to an infinite-dimensional
system. Applying the argument in [4], we can extend the result to multipartite systems: any
two orthogonal pure states in multipartite systems are distinguishable by LOCC even in
infinite-dimensional systems.

Remark 2.4. In [12], Virmani et al showed that any two (even non-orthogonal) multipartite
pure states in finite-dimensional systems can be optimally distinguished using only LOCC. It
was derived using the result of the orthogonal case in [4]. The argument there can be applied
to our infinite-dimensional case. Therefore, any two bipartite pure states can be optimally
distinguished using only LOCC, even for infinite-dimensional systems.

Example 2.5. Let {|ek〉}∞k=1, {|fk〉}∞k=1 be the orthonormal basis of HA,HB , respectively. Then
for orthogonal three states |ψ1〉, . . . , |ψ3〉 given by

|ψ1〉 =
∑

k

ck|e2k〉 ⊗ |f2k〉,

|ψ2〉 =
∑

k

dk|e2k+1〉 ⊗ |f2k+1〉,

|ψ3〉 =
∑

k

dk|e2k〉 ⊗ |f2k+1〉 + ck|e2k+1〉 ⊗ |f2k〉,

the dimension of K is 2. Therefore, by theorem 2.1 these states are deterministically
distinguishable by LOCC.

Example 2.6. Let us consider three orthogonal simultaneously Schmidt decomposable pure
states [13] with real coefficients

|ψi〉 =
∑

k

ci
k|ek〉 ⊗ |fk〉, ci

k ∈ R, ci
1 � ci

2 � · · · , i = 1, 2, 3.

The dimension of the associated real vector space K is then less than 3, because the imaginary
parts of the associated operators are 0. Therefore, from theorem 2.2, they are distinguishable
with probability larger than

1 − max
i=1,2,3

(∣∣ci
1

∣∣2
+

∣∣ci
2

∣∣2)
.

For example, the following vectors are distinguishable with probability more than (2 − 2r +
r2)/(2(1 + r)), for r small enough:

|ψ1〉 =
√

r(2 − r)

2(r + 1)

[√
2r

r(2 − r)
|e0〉 ⊗ |f0〉

+
∞∑

k=0

(1 − r)k(|e3k+1〉 ⊗ |f3k+1〉 − |e3k+2〉 ⊗ |f3k+2〉)
]

|ψ2〉 =
√

r(2 − r)

3 + 2r + 2r2

[
−

√
2r

r(2 − r)
|e0〉 ⊗ |f0〉 +

∞∑
k=0

(1 − r)k((1 + r)|e3k+1〉 ⊗ |f3k+1〉

+ (1 − r)|e3k+2〉 ⊗ |f3k+2〉 + |e3k+3〉 ⊗ |f3k+3〉)
]

|ψ3〉 =
√

r(2 − r)

6

[ ∞∑
k=0

(1 − r)k (|e3k+1〉 ⊗ |f3k+1〉 + |e3k+2〉 ⊗ |f3k+2〉 − 2|e3k+3〉 ⊗ |f3k+3〉)
]

.

Here, {ek}∞k=0{fk}∞k=0 are CONS of Alice and Bob, respectively.
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3. Distinguishability and joint numerical range

In this section, we introduce the key notion of our proof, joint numerical range. Then we state
how it is related to the distinguishability problem.

Let (A1, . . . , AN) be bounded self-adjoint operators on a Hilbert space H. A subset of
R

N given by

{(〈z,A1z〉, 〈z,A2z〉, . . . , 〈z,ANz〉) , z ∈ H, ‖z‖ = 1} ⊂ R
N

is called the joint numerical range (or generalized numerical range) of (A1, . . . , AN).
Furthermore, for an orthogonal projection P on H, we will call the set

CP (A1, . . . , AN) ≡ {(〈z,A1z〉, 〈z,A2z〉, . . . , 〈z,ANz〉); z ∈ PH, ‖z‖ = 1} ⊂ R
N,

the joint numerical range of (A1, . . . , AN) restricted to the sub-Hilbert space PH. The
distinguishability of states is related to the convexity of joint numerical ranges as follows:

Proposition 3.1. Let ψ1, . . . , ψM be a set of orthogonal pure states in HA ⊗ HB , and K the
associated real vector space of trace class self-adjoint operators on HB . Let (A1, . . . , AN)

be a basis of K. Suppose that for any projection P on HB, CP (A1, . . . , AN) is convex. Then
the states ψ1, . . . , ψM are distinguishable by LOCC with certainty.

Proposition 3.2. Let ψ1, . . . , ψM be a set of orthonormal pure states in HA ⊗HB , and K the
associated real vector space of trace class self-adjoint operators on HB . Let (A1, . . . , AN)

be a basis of K. Suppose that for any projection P of HB with dimension larger than
Np,CP (A1, . . . , AN) is convex. Then the states ψ1, . . . , ψM are distinguishable by LOCC
with the probability Pd such that

Pd � 1 − max
1�l�M


 Np∑

k=1

pl
k


 .

Here, pl
k represents the kth Schmidt coefficient of ψl , ordered in the decreasing order.

Theorems 2.1 and 2.2 are derived as corollaries of these propositions.

Remark 3.3. In general, joint numerical range is not convex. For example, it is easy to see
that the joint numerical range of the Pauli operators on C

2 is not convex (see [14]).

Propositions 3.1, 3.2 will be proved in section 4. Here, we explain the proof of proposition
3.1 briefly, for the finite N-dimensional case, in order to give readers the essence of the proof:
as operators {Xl} satisfy the condition (5), for an orthonormal basis {ek}k , we have

D∑
k=1

〈ek,X
∗
l Xmek〉 = 0,

for all l, m, which is equivalent to

1

D

D∑
k=1

(〈ek, A1ek〉, . . . , 〈ek, ANek〉) = 0.

Note that the left-hand side of this equation is the convex combination of elements in the joint
numerical range. Therefore, if the convexity assumption in proposition 3.1 holds, 0 is in the
joint numerical range. In other words, there exists a normalized vector |g1〉 such that

(〈g1, A1g1〉, . . . , 〈g1, ANg1〉) = 0. (7)
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This is equivalent to having

〈g1, X
∗
l Xmg1〉 = 0,

for all l, m. Let us consider the restriction of {Ai} to the sub-Hilbert space orthogonal to |g1〉.
We can repeat the same argument as above and obtain a normalized vector |g2〉 orthogonal to
|g1〉, such that

〈g2, X
∗
l Xmg2〉 = 0.

Repeating this argument, we obtain an orthonormal basis {gk}Dk=1 such that

〈gk,X
∗
l Xmgk〉 = 0, k = 1, . . . , D.

From this, we have a decomposition

ψl =
∑

k

ξ l
k ⊗ ḡk, l = 1, . . . ,M.

where |ḡk〉 is the complex conjugation of |gk〉 and
{∣∣ξm

k

〉}
satisfying〈

ξ l
k

∣∣ξm
k

〉 = 0 ∀l �= m, ∀k.

Hence as in [4], the states are deterministically distinguishable.
The proof of the infinite-dimensional case is basically the same. The main difference

is that Tr X∗
l Xm cannot be regarded as scalar multiplication of the convex combination of

elements in the joint numerical range. (D = ∞ for this case.) The point is that we still can
show the existence of a vector satisfying (7). This is proven in lemma 4.2 in the next section.

4. Proof of theorems 2.1 and 2.2

First we prove proposition 3.1. The proof consists of four steps:

Step 1. First, we show that if HB has an orthonormal basis {gk} such that 〈gk,Aigk〉 = 0 for
all i = 1, . . . , N and k, then, ψ1, . . . , ψN are distinguishable by LOCC (lemma 4.1).

Step 2. Second, using convex analysis, we show that if the joint numerical range of
(A1, . . . , AN) is convex, there exists at least one vector z ∈ HB such that 〈z,Aiz〉 = 0
for all i = 1, . . . , N (lemma 4.2).

Step 3. Third, using lemma 4.2, we show the existence of the orthonormal basis satisfying the
desired condition in step 1 (lemma 4.4).

Step 4. Finally, combining the results of step 1 and step 3, we obtain proposition 3.1.

Now let us start the proof. First we show the following lemma:

Lemma 4.1. Let (A1, . . . , AN) be a basis of K associated with ψ1, . . . , ψM . Suppose that
there exists an orthonormal basis {gk} of HB such that

〈gk,Aigk〉 = 0, ∀k, i = 1 . . . N. (8)

Then the states ψ1, . . . , ψM are distinguishable by LOCC.

Proof. In order to investigate distinguishability, we look for a suitable decomposition of the
states. Let us decompose the vectors ψ1, . . . , ψM with respect to an orthonornal basis {ek} of
HB :

ψl =
∑

k

ξ l
k ⊗ ek, l = 1, . . . , M. (9)
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If the orthogonal conditions〈
ξ l
k

∣∣ξm
k

〉 = 0 ∀l �= m, ∀k (10)

hold, then Alice and Bob can distinguish these states by LOCC [4]. (Note that this
orthogonality condition does not hold in general.) Therefore, it suffices to show the existence
of this decomposition.

Let {fi} be the orthonormal basis fixed in section 2. (Recall that we defined the operators
Xls in terms of {fi}.) We define an antilinear operator J : HB → HB to be the complex
conjugation with respect to {fi}:

J
∑

i

αifi ≡
∑

i

ᾱifi .

As J is an antilinear isometry, {Jgk} is an orthonormal basis of HB . Therefore, we can
decompose ψ1, . . . , ψM with respect to {Jgk}:

ψl =
∑

k

ξ l
k ⊗ Jgk. (11)

We show that for each k,
{
ξ 1
k , . . . , ξM

k

}
are mutually orthogonal.

Let us decompose ψl with respect to {fi}:
ψl =

∑
i

ϕl
i ⊗ fi. (12)

Comparing (11) and (12), we obtain

ξ l
k =

∑
i

ϕl
i 〈Jgk, fi〉 =

∑
i

ϕl
i 〈fi, gk〉 = Xlgk.

As (A, . . . , AN) is a basis of K, the assumption (8) implies〈
ξ l
k, ξ

m
k

〉 = 〈Xlgk,Xmgk〉 = 0 ∀l �= m, ∀k.

Hence for each k,
{
ξ 1
k , . . . , ξM

k

}
are mutually orthogonal.

Thus (11) takes the form of (9), with the orthogonality condition (10). Therefore, we can
distinguish ψ1, . . . , ψM by LOCC with certainty. �

Next we show the following lemma which holds on a general Hilbert space H:

Lemma 4.2. Let (A1, . . . , AN) be a set of trace class self-adjoint operators on a Hilbert
space H such that Tr Ai = 0 for each 1 � i � N . Suppose that the joint numerical range of
(A1, . . . , AN) is a convex subset of R

N . Then there exists a vector z ∈ H with ‖z‖ = 1 such
that

〈z,Aiz〉 = 0, i = 1, . . . , N.

Proof. Before starting the proof, we review some basic facts from convex analysis [15].
Let x1, . . . , xk be elements in R

N . An element
∑k

i=1 αixi with real coefficients αi satisfying∑k
i=1 αi = 1 is called an affine combination of x1, . . . , xk . An affine manifold in R

N is a set
containing all its affine combinations. Let S be a nonempty subset of R

N . The affine hull of
S is defined to be the smallest affine manifold containing S. We denote the affine hull of S by
affS. In other words, affS is the affine manifold generated by S. As easily seen, it is a closed
plane parallel to a linear subspace in R

N . Its dimension may be lower than N in general. The
relative interior of S, riS, is the interior of S with respect to the topology relative to affS. In
other words,

riS ≡ {x ∈ S; ∃ ε > 0 s.t. B(x, ε) ∩ affS ⊂ S}.
Here, B(x, ε) is a ball of radius ε, centred at x. The following fact is known: �
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Lemma 4.3. Let C be a nonempty convex subset of R
N . Then for any point x0 in affC\riC,

there exists a non-zero vector s ∈ R
N parallel to affC, such that

〈〈s, x − x0〉〉 � 0, ∀x ∈ C.

Here 〈〈, 〉〉 is the inner product of R
N :

〈〈s, x〉〉 ≡
N∑

i=1

si · xi.

Now we are ready to prove lemma 4.2. The claim is equivalent to saying that 0 is included in
the joint numerical range of the operators (A1, . . . , AN). We denote the joint numerical range
by C1:

C1 ≡ {(〈z,A1z〉, 〈z,A2z〉, . . . , 〈z,ANz〉) ∈ R
N, z ∈ H, ‖z‖ = 1}.

By assumption, C1 is a nonempty convex subset of R
N . Let {ek} be an arbitrary orthonormal

basis of H. By the definition of C1,

xk ≡ (〈ek, A1ek〉 , . . . , 〈ek, ANek〉)
is an element of C1 for each k.

The finite-dimensional case H = C
n is immediate. By the convexity of C1, we obtain

0 = 1

n
(Tr A1, . . . , Tr AN) = 1

n

n∑
k=1

(〈ek, A1ek〉, . . . , 〈ek, ANek〉) ∈ C1.

Below we prove the infinite-dimensional case.
First we observe that 0 is included in the closure of C1. In particular, 0 is in affC1. To

see this, note that for all l ∈ N, we have

1

l

l∑
k=1

(〈ek, A1ek〉, . . . , 〈ek, ANek〉) ∈ C1.

As Ai is a trace class operator, the sum
∑∞

k=1〈ek, Aiek〉 converges absolutely. By taking
l → ∞ limit, we obtain

0 = lim
l→∞

1

l

l∑
k=1

(〈ek, A1ek〉, . . . , 〈ek, ANek〉) ∈ C1 ⊂ affC1.

Hence 0 is in affC1.
Second, we show that 0 is actually in riC1. To prove this, assume 0 is not included in

riC1. Then it is an element of affC1\riC1. As C1 is a nonempty convex set, from lemma 4.3,
there exists a non-zero vector s = (s1, . . . , sN) ∈ R

N parallel to affC1, such that

〈〈s, x〉〉 � 0, ∀x ∈ C1.

As xk ∈ C1, we have

〈〈s, xk〉〉 � 0, (13)

for all k. On the other hand, we have
∞∑

k=1

〈〈s, xk〉〉 =
N∑

i=1

si

∞∑
k=1

· 〈ek, Aiek〉 =
N∑

i=1

si · Tr Ai = 0. (14)

From (13) and (14), we obtain 〈〈s, xk〉〉 = 0 for all k. As the orthonormal basis {ek} can be
taken arbitrarily, we obtain

〈〈s, x〉〉 = 0, ∀x ∈ C1.
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As s is a non-zero vector parallel to affC1, this means that C1 is included in some affine
manifold that is strictly smaller than affC1. This contradicts the definition of affC1. (Recall
that affC1 is the smallest affine manifold including C1.) Therefore, we obtain 0 ∈ riC1. In
particular, 0 ∈ C1 and this completes the proof.

Using lemma 4.2, we obtain the following lemma:

Lemma 4.4. Let (A1, . . . , AN) be a set of trace class self-adjoint operators on a Hilbert space
H such that Tr Ai = 0 for each 1 � i � N . Suppose that for every orthogonal projection P on
H, CP(A∞, . . . ,AN ) is convex. Then there exists an orthonormal basis {gk} of H, such that

〈gk,Aigk〉 = 0, ∀i = 1, . . . N, ∀k.

Proof. We will say that a set of vectors Z in H satisfies property* if it satisfies the following
conditions:

Property*

(i) Z is a set of mutually orthogonal unit vectors of H.
(ii) 〈z,Aiz〉 = 0, i = 1, . . . , N for all z ∈ Z.

By Zorn’s lemma, there exists a maximal set of orthonormal vectors {gk} in H which
satisfies the property*. It suffices to show that {gk} is complete.

Suppose that {gk} is not complete in H, and let P be the orthogonal projection onto the
sub-Hilbert space spanned by {gk}. From property*, we have

Tr PAiP =
∑

k

〈gk,Aigk〉 = 0, i = 1, . . . N.

Let P̄ = 1 − P . Now we regard (P̄A1P̄ , . . . , P̄ANP̄ ) as self-adjoint trace class operators on
the Hilbert space P̄H such that

TrP̄H (P̄AiP̄ ) = Tr (Ai) − Tr (PAiP ) = 0, i = 1, . . . N.

By the assumption, the joint numerical range of (P̄A1P̄ , . . . , P̄ANP̄ ) on P̄H is convex.
Thus, applying lemma 4.2, there exists a unit vector z ∈ P̄H such that 〈z,Aiz〉 = 0 for all
i = 1, . . . , N . As z is orthogonal to all gk , the set {z} ∪ {gk} satisfies the property*, and is
strictly larger than {gk}. This contradicts the maximality of {gk}. Therefore, {gk} is complete.

�

Now, let us complete the proof of proposition 3.1. The basis ofK, (A∞, . . . ,AN ) are trace class
self-adjoint operators satisfying Tr Ai = 0, i = 1, . . . , N (6). Therefore if CP (A1, . . . , AN)

is a convex subset of R
N for any orthogonal projection P on HB , there exists an orthonormal

basis {gk} of HB such that 〈gk,Aigk〉 = 0, for all i = 1, . . . N and k, from lemma 4.4. By
lemma 4.1, this concludes that ψ1, . . . , ψM are distinguishable by LOCC.

Proposition 3.2 can be shown in the same way. We have the following lemma:

Lemma 4.5. Let (A1, . . . , AN) be a set of trace class self-adjoint operators on a Hilbert space
H such that Tr Ai = 0 for each 1 � i � N . Suppose that for every orthogonal projection
P on H with dimension larger than Np, CP (A1, . . . , AN) is convex. Then there exists an
orthonormal basis {gk} of H, such that

〈gk,Aigk〉 = 0, i = 1, . . . N, ∀k > Np.

Proof. The same as the proof of lemma 3.6. We can find a set of orthonormal vectors satisfying
property*, such that the dimension of its complementary subspace is Np. �



3068 Y Ogata

Decomposing each ψl with respect to {Jgk}, we obtain

ψl =
∑

k

ξ l
k ⊗ Jgk, (15)

with 〈
ξ l
k

∣∣ξm
k

〉 = 0 ∀l �= m ∀k > Np, (16)

then ψ1, . . . , ψM can be distinguished by conclusive LOCC protocol, probabilistically: Bob
carries out the measurement {|Jgk〉〈Jgk|}. We call it an error if Bob obtains |ek〉 for k � Np.
Otherwise, Alice sequentially carries out the projective measurement given by

{∣∣xilk
〉}

l
, and

distinguishes the states. This conclusive protocol distinguishes the states with probability Pd ,
lower bounded as

Pd � 1 − max
1�l�M

Np∑
k=1

∥∥ξ l
k

∥∥2
. (17)

By the argument in the proof of lemma 4.1, (15) takes the form of (9) with the orthogonality
condition. Therefore, for the protocol in the introduction, the probability that the error occurs
is

∑Np

k=1

∥∥ξ l
k

∥∥2
when ψ = ψl . It is bounded from above as follows:

Np∑
k=1

∥∥ξ l
k

∥∥2 =
Np∑
k=1

‖(1 ⊗ |Jgk〉〈Jgk|) ψl‖2

� sup




Np∑
k=1

‖(1 ⊗ |zk〉〈zk|) ψl‖2 , {zk}Np

k=1 : orthonormal set of HB


 =

Np∑
k=1

pl
k.

Here, pl
k is the kth Schmidt coefficient of ψl , ordered in the decreasing order. Therefore,

ψ1, . . . , ψM

Pd � 1 − max
1�l�M


 Np∑

k=1

∥∥ξ l
k

∥∥2


 � 1 − max

1�l�M


 Np∑

k=1

pl
k


 ,

and we obtain proposition 3.2.

Proof of theorems 2.1 and 2.2. Now we apply the known results about joint numerical range
to propositions 3.1, 3.2 and derive theorems 2.1 and 2.2. For N = 2 case, the following
theorem is known [16]: �

Theorem 4.6. For any bounded self-adjoint operators T1, T2 on a separable Hilbert space H,
the set

{(〈z, T1z〉, 〈z, T2z〉) ∈ R
2, z ∈ H, ‖z‖ = 1}

is a convex subset of R
2.

This is called the Toeplitz Hausdorff theorem. By this theorem, CP (A1, A2) is a convex subset
of R

2 for any projection P on HB . Therefore, applying proposition 3.1, we obtain theorem 2.1.
The last statement comes from the fact N � M(M − 1) = 2 for M = 2.

On the other hand, for N = 3, the next theorem is known [17, 18].

Theorem 4.7. Let H be a separable Hilbert space with dimH � 3. Then for any self-adjoint
operators T1, T2, T3 in H, the set

{(〈z, T1z〉, 〈z, T2z〉, 〈z, T3z〉) ∈ R
3, z ∈ H, ‖z‖ = 1}

is a convex subset of R
3.
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By this theorem, CP (A1, A2, A3) is a convex subset of R
3 for any projection P on HB with

dimension larger than 2. Therefore, applying proposition 3.2, we obtain theorem 2.2.
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